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Note 

Numerical Solution of Landau’s Dispersion Equation 

There is a continuing need for accurate values of Landau’s pole, i.e., the root 
closest to the real axis of Landau’s dispersion equation [l-3]: 

K2 + 1 + i7+zw(z) = 0, (1) 
where K = kh, (k is the wavenumber and h, is the Debye length); and w(z) is 
the complex error function of long-standing importance in many branches of 
physics [4]. In plasma physics, w(z) is generally known as the plasma dispersion 
function [5]. A survey of the plasma physics literature shows that: (i) although 
many researchers have solved (I) [6], no table of Landau’s pole which is sufficiently 
complete and accurate seems to be available; (ii) there is a need in many plasma 
problems to compute the complex error function w(z) with ease and accuracy, an 
obviously preferable procedure to table searches. The situation pointed out in (i) 
seems to this day to force the research worker interested in accurate values of 
Landau’s pole to solve (1) again; while the observation in (ii) leads also to con- 
tinued efforts by plasma physicists to develop new methods to compute w(z). 

The aim of this note is twofold: First, to give Landau’s pole with five figure 
accuracy in the range of most interest 0.25 < K < 2.0 with increments dK = 0.05 
(see Table I); simple linear interpolation from this table gives the frequency and 
damping rate for any K in the above range with four and three figure accuracy, 
respectively. Second, we wish to call attention to the important work of Gautschi 
[7,8] on the computation of the complex error function w(z). Gautschi’s subroutine 
published in Algol[8] has been used in Fortran (a total of about 40 statements), and 
the values obtained for w(z) were compared with the well-known tables of 
Faddeyeva and Terent’ev [9], and of Fried and Conte [5]. The efficiency and 
accuracy of Gautschi’s subroutine proved excellent over the whole complex plane. 

We now outline very briefly the method of solution of (1). It is known [l, 21 that 
the roots z = x + iv of (I) are in the lower half plane (x gives the frequency and y 
the damping), y < 0. As Gautschi’s subroutine evaluates w(z) only in the first quad- 
rant of the complex z-plane, we use the relation [7] w(-z) = 2 exp(-z2) - w(z) 
to transform (1) into an equivalent equation whose roots z = x + iy satisfy 
x > 0, y > 0, and the corresponding Landau’s root is x, = x and yL = --y. 
Separating the real and imaginary parts in (l), we get a system of two nonlinear 
equations in x and y of the form: 

.fI(X~ Y) = 07 (24 
K2 +.Mx, Y) = 0. (W 
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TABLE I 

Numerical Solution of Landau’s Dispersion Equation4 

K 
Real plasma frequency 

(4%) 

Damping coefficient 

(-rho) 

0.25 1.1056 0.0021693 
0.3 1.1598 0.012623 
0.35 1.2209 0.034324 
0.4 1.2850 0.066133 
0.45 1.3502 0.10629 
0.5 1.4156 0.15336 
0.55 1.4809 0.20624 
0.6 1.5457 0.26411 
0.65 1.6100 0.32633 
0.7 1.6739 0.39240 
0.75 1.7371 0.46192 
0.8 1.7999 0.53455 
0.85 1.8621 0.61003 
0.9 1.9239 0.68811 
0.95 1.9851 0.76860 
1.0 2.0459 0.85134 
1.05 2.1062 0.93615 
1.1 2.1662 1.0229 
1.15 2.2257 1.1115 
1.2 2.2848 1.2019 
1.25 2.3436 1.2939 
1.3 2.4020 1.3874 
1.35 2.4600 1.4824 
1.4 2.5178 1.5789 
1.45 2.5752 1.6766 
1.5 2.6323 1.7757 
1.55 2.6892 1.8760 
1.6 2.7457 1.9775 
1.65 2.8020 2.0801 
1.7 2.8580 2.1839 
1.75 2.9138 2.2886 
1.8 2.9693 2.3944 
1.85 3.0246 2.5012 
1.9 3.0797 2.6090 
1.95 3.1345 2.7176 
2.0 3.1891 2.8272 
2.3088 3.5222 3.5522 

a Landau’s pole is given in units of the plasma frequency w,, = (4rne2/m)112. 
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wheref, andf, are nonlinear functions of x and y involving the real and imaginary 
parts of w(z). The fact that the parameter K appears in a simple form only in (2b) 
is exploited as follows. For a pair of guesses y, and y, , the nonlinear equation (2a) 
is solved by Muller’s method [lo] for the corresponding roots x1 and xz ; substi- 
tution of (x1 , y,) and (x2 , JQ in (2b) gives the corresponding values of K1 and K, . 
The approximate value y3 corresponding to the desired value of K is now obtained 
by linear interpolation from the pairs ( y1 , &) and ( yz , KS). The y3 thus obtained 
is now substituted into (2a) and this is again solved for xQ ; the pair (x, , y3) gives 
now a new KS, etc. Linear interpolation between the pairs (yip1 , Kim1) and 
(ri , Ki) is pursued until 

1 Ki - K / < 10-6. (3) 

This accuracy criterion gives us five significant figure accuracy for the real and 
imaginary part of the root z. Except for K = 0.25 (see Table I), the number of 
linear interpolations required for convergence is about four, even when the initial 
guesses are quite inaccurate. For K < 0.25, convergence is difficult but Landau’s 
pole can be obtained, if required, from asymptotic formulas [l 11. 

REFERENCES 

1. L. LANDAU, J. Phys. USSR 10 (1946), 25. 
2. J. D. JACKSON, J. Nucl. Energy Cl (1960), 171. 
3. J. CANOSA, IBM Scienttic Center Rept. No. G320-3282, Palo Alto, California (1971). 
4. B. H. ARMSTRONG AND R. W. NICHOLS, “Emission, Absorption and Transfer of Radiation 

in Heated Atmospheres,” p. 218, Pergamon Press, New York, 1972. 
5. B. D. FRIED AND S. D. CONTE, “The Plasma Dispersion Function,” Academic Press, New 

York, 1961. 
6. See for example Ref. 2 above: S. P. GARY, Phys. Fluids 10 (1967), 570. 
7. W. GAUTSCHI, SIAM J. Numer. Anal. 7 (1970), 187. 
8. W. GAUTSCHI, Comm. ACM 12 (1969), 635. 
9. V. N. FADDEYEVA AND N. M. TERENT’EV, “Tables of Values of Function 

w(z) = e-,’ 

for Complex Argument,” Pergamon Press, New York, 1961. 
10. D. E. MULLER, Muth. Tables Aids Comp. 10 (1956), 208. (Muller’s method is programmed 

in a subroutine called RTMI available in IBM Corporation Report No. H20-0205-2, Technical 
Publications Dept., White Plains, New York.) 

11. J. CANOSA, Phys. Fluids 15 (1972), 1536. 

RECEJS’ED: April 5, 1973 
Jo& CANOSA 

IBM Scientific Center 
Palo Alto, California 94304 


